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R H E T A  N.  R U B E N S T E I N

T HE FUNCTION GAME IS A POWERFUL
and motivating tool for engaging middle-
grades students in mental mathematics,
problem solving, communication, and in-

ductive reasoning (Rubenstein 1996). The game
can also be used to help students achieve the
goals of NCTM’s Algebra Standard for grades
6–8; that is, to “represent, analyze, and generalize
a variety of patterns with tables, graphs, words,
and, when possible, symbolic rules” (NCTM 2000,

p. 222). (For a simple electronic version of the
game, use the applet on the CD-ROM in Cuevas
and Yeatts [2001].) This article will show how the
function game format serves as a launchpad to
help students build, distinguish, and translate be-
tween two basic forms of patterns.

To play the function game, also known as “guess
my rule,” “the computer game,” or “the input/out-
put game,” the teacher or a student acts as the
“computer.” Players—the whole class or a smaller
group—offer one input number at a time. The
“computer” follows some fixed but secret rule to
produce the related “output.” The input numbers
and associated output results are recorded on a
table. For example, for a game in which the rule is
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“the output is 3 times the input plus 1,” the table of
a game in progress might look like the following: 

The object is to guess the rule. To keep the game
open, if a player knows the rule, he or she is asked
not to state it. Instead, the player may demonstrate
his or her knowledge by telling the output for a given
input. (If the player is wrong, he or she either does
not know the rule or miscalculated. If the player is
right, he or she probably knows the rule.) When a
number of people know the rule, someone is invited
to state it. Sometimes, alternative versions are given.
For example, a student may state the rule above as
“double the number, add it again, then add 1.” Then
students are challenged to decide why that rule and
“triple the input plus 1” are always equivalent.

One strategy students usually figure out after
playing a few games is to use 0 for an input. An-
other strategy is to give input values that are whole
numbers in consecutive order. More astute players
who are trying to guess the rule above might pro-
duce a table that looks like the following:

At this point, students usually figure out a pattern in
the output column of “add 3 to the previous number.”
This strategy gives students a way to build chains of
consecutive output results but stumps them when
they try to determine the output for an input of, say,
30. To find that result, students need a rule that
moves directly from input to output. The same prob-
lem occurs when presenting students with a se-
quence and asking them to continue it. For example,
students are often able to find the next three terms in
the sequence 12, 24, 48, 96 by recognizing that each
term is twice the previous term. They have trouble,
however, giving a formula for the tenth term or, more
abstractly, the nth term (e.g., 6 • 2n). As one com-
mon example, when students are presented with the
sequence 1, 4, 9, 16, 25, 36, 49, 64, . . . , rather than
seeing the perfect squares jump off the page, many
see that they can move from term to term by adding
the next odd number. For example:

1 + 3 = 4, 4 + 5 = 9, 9 + 7 = 16, 16 + 9 = 25

The students’ pattern is beautiful, but perfect
squares ought to be such “good friends” that stu-
dents recognize them immediately, especially when
a whole group appears together!

These examples show that students look for pat-
terns in at least two distinct ways. The following
paragraphs describe how to help students move be-
tween these two perspectives.

Functions, Sequences, and Recursive 
versus Explicit Rules
ALTHOUGH THE FUNCTION GAME CAN BE 
played with all kinds of input numbers, such as frac-
tions, integers, and so on, when the input consists
of whole numbers (0, 1, 2, 3, . . . ), the function can
be thought of as a sequence. A rule for the se-
quence can be expressed recursively or explicitly.
Consider, for example, the game above with the
output 1, 4, 7, 10, . . . . Using the students’ generally
intuitive notion of “adding 3,” we can build a recur-
sive, or step-by-step, rule:

start = 1
next = current + 3

The first step tells how the sequence begins. It an-
chors the later steps. The second step tells how to
go from one output to the next. The metaphor I
share with students is that once I know how to
begin, I can just “look over my shoulder” at the pre-
vious number to figure out how to find the next
number. We often need a conversation at this point
to convince students that both parts of the “rule” are
necessary. “Why do I need to know the starting
number? Suppose the first number were 10 rather
than 1. Then what would the following numbers be?
Is the sequence the same?” Ultimately, students rec-
ognize that the “start” matters.

The “start, next, current” notation is used in
Mathematics in Context (Encyclopaedia Britannica
Educational Corporation 1998). Other publishers
use “next = now + 3” or “new = old + 3.” In all these
textbooks, the notation has been designed to be stu-
dent friendly, unlike the more abstract and tradi-
tional subscripted sequence or function notations,
such as the following:

t1 = 1 f(1) = 1
t n = t n–1 + 3 f(x) = f(x – 1) + 3

The rule that makes this round of the function
game easy to play, however, is simply y = 3x + 1, or
output = 3(input) + 1. This rule is an explicit (or

INPUT OUTPUT

7 22
12 37
10 31
25 76

INPUT OUTPUT

0 1
1 4
2 7
3 10
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closed or direct) rule. With an explicit rule, one can
take any input and find the corresponding output
directly. 

Students need to be able to distinguish these
two ways of thinking about rules, that is, using a
step-by-step, or recursive, form versus using a di-
rect, or explicit, form. When students talk about a
problem, they need to know if one person is offer-
ing an explicit rule while another is using a recur-
sive rule. For example, consider asking students to
describe patterns for the even numbers 2, 4, 6, 8,
10, . . . . One student may say, “add 2” and another
may say, “multiply by 2.” They appear to be in con-
flict! Students must realize that “add 2” is part of a
recursive rule: “Start at 2 and add 2 to the previous
number to get the next.” In contrast, “multiply by
2” is an explicit rule: “Multiply the input by 2 to get
the output.” 

After struggling for some time with teaching
this distinction, I discovered that the function game
table helps tremendously. As shown in figure 1, a
recursive rule goes from output to output down the
right-hand column. An explicit rule goes from input
to output across the table. The table clarifies the
two types of rules and how they each work. In par-
ticular, when students are asked to find rules for
sequences presented simply as consecutive terms,
they typically do not see the “input,” or term, num-
ber and have difficulty using this “hidden” number
in building a rule. The input/output table makes
the input explicit.

Using Game Tables to Build Explicit Rules
from Recursive Rules
BECAUSE SO MANY STUDENTS HAVE A NATURAL
inclination to look first for recursive rules, finding
explicit rules may be hard for them. Again, the func-
tion game table can build a bridge between the two
forms. Assume that students have been asked to
solve the following problem: “A construction crew
at an agricultural fair is building square animal
pens. How many panels does the crew need to build
a line of 30 pens?” The problem may be modeled
with toothpicks, as shown in figure 2. Note that
students are working with the same pattern shown
earlier but this time, in a geometric context. They
are asked to include a third column (as shown in
figure 2a) to show how the recursive rule, “add 3
to the previous number,” can be used to find an ex-
plicit rule. The third column shows the structure of
the pattern explicitly. After seeing an example or
two, students usually begin to realize that they are
just adding more 3s to the starting value. The num-
ber of 3s added is one less than the input number
because the 3 is not added the first time. Conse-Fig. 2  Using tables to build explicit rules from recursive rules

Fig. 1  Distinguishing recursive and explicit rules

NO. OF NO. OF PANELS

PENS (OR TOOTHPICKS) PATTERN A

1 4 4 4 

2 7 4 + 3 = 4 + 1(3)

3 10 4 + 3 + 3 = 4 + 2(3)

4 13 4 + 3 + 3 + 3 = 4 + 3(3)

5 16 4 + 3 + 3 + 3 + 3 = 4 + 4(3)

n 4 + (n – 1)3

30 4 + (29)3 = 91

(a)

NO. OF NO. OF PANELS

PENS (OR TOOTHPICKS) PATTERN B

0 1 1

1 4 1 + 3 1 + 1(3)

2 7 4 + 3 + 3 = 1 + 2(3)

3 10 4 + 3 + 3 +3 = 1 + 3(3)

4 13 4 + 3 + 3 + 3 + 3 = 1 + 4(3)

5 16 4 + 3 + 3 + 3 + 3 + 3 = 1 + 5(3)

n 1 + n(3)

30 1 + (30)3 = 91

(b)

(c)

1 1 + 3  1 + 3 + 3   1 + 3 + 3 + 3   1 + 3 + 3 + 3 + 3
Case  0     1             2                      3                            4 

INPUT OUTPUT

0 1

1 4

2 7

3 10

x y = 3x + 1

Start at 1

+3

+3

+3

Explicit Rule

Recursive
Rule
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quently, an explicit formula for the output can be
derived: 4 + (n – 1)3.

For many students, the (n – 1) idea is difficult.
For these students, we offer another solution
method, shown in figure 2b. At this point, ask, “If
you can add 3 to move forward, what must you do to
move backward?” Students realize that they must
subtract 3. With this part of the rule in mind, they
move backward one row from the starting row to
consider an input of 0. The output for 0 must be 4 – 
3 = 1. As shown in figure 2c, the “0 case” can be en-
visioned geometrically. Imagine just one toothpick
at the left of the display. Then, for each successive
square, add three toothpicks in the form of a back-
ward C. Many students benefit by seeing geometri-
cally the connection between the numerical pattern
and its physical construction. Now we can create a
formula in which the number of 3s added is pre-
cisely the number of squares, or the input number.
The formula is 1 + 3n. 

The particular problem illustrated asks students

to find the output for the thirtieth case. With a gen-
eral formula now in hand, they can substitute and
evaluate for n = 30 or any other input.

Investigating Whether Rules Are
Equivalent
STUDENTS ARE OFTEN SURPRISED THAT MORE
than one way may exist to express a rule. This situa-
tion is an opportunity to use graphs and algebra 
to enhance their learning. Graphing either of the
two rules in figure 2 produces points that fall on a
line (see fig. 3). The line has a slope of 3 and a 
y-intercept of 1. As with all rules that produce points
on a line, the slope is the value added to each suc-
cessive term in the recursive rule (in this case, the
three panels added repeatedly) and the y-intercept
is the output produced when the input is 0. (In this
case, the single vertical toothpick needed before
three panels completes the first pen.) After investi-
gating several such linear rules, students begin to
recognize these connections, deepening their un-
derstanding of important algebraic ideas.

When two rules produce the same graph, we
have evidence that they are, in fact, two forms of the
same rule. To be perfectly sure, however, we need
to use algebra to prove the equivalence. For exam-
ple, using the rules in figures 2a and 2b, we can
show equivalence using the distributive property
and adding like terms:

4 + 3(n – 1) = 4 + 3n – 3 = 1 + 3n

Unfortunately, not all patterns can be as easily de-
rived as the case of the line illustrated above is.
Sometimes, a geometric approach works better. Re-
call the earlier discussion that when shown the se-
quence of perfect squares, students often see only
the recursive pattern, that is, next = current + next
odd number. Figure 4 offers an activity to help stu-
dents recognize the equivalence of their recursive
rule (“adding the next odd”) and the explicit rule, n2.
Students are usually surprised and intrigued that
they can physically see the successive odd numbers
of a recursive rule being added to produce the
squares of an explicit rule.

Investigating Patterns with Calculators

CALCULATORS CAN ALSO BE USED TO HELP STU-
dents explore linear and geometric sequences.
One of the calculators that is helpful in exploring
recursive sequences is the TI-73. With such a cal-
culator, students can create recursive sequences
using the constant feature. As shown in figure 5a,

1. Graph the data from the agricultural pen pat-
tern (fig. 2).

Let the x-axis show the number of pens
scaled by ones. 

Let the y-axis show the number of panels
scaled by fives. 

2. What is the shape of the graph? 

3. What are its characteristics? Slope? y-intercept?

4. What do the graph’s characteristics have to
do with the original pattern?

Sample graph:

Fig. 3  Graphing points of a linear function
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a student can SET an operation as a constant along
with a value, for example, +3, which corresponds
to our earlier example. Then, when the student
presses 1 CONST, the calculator automatically
prints and computes 1 + 3 and shows 4. The
screen also displays n = 1, indicating the first use
of the built-in constant. As the constant key is
pressed repeatedly, successive terms in the se-
quence appear, along with their term numbers (n).
Figure 5b shows the same procedure for produc-
ing a geometric sequence.

Students may like to verify that the same se-
Fig. 5  Using the TI-73 constant feature to produce linear
and geometric sequences recursively

Press Set Constant, select Single mode, and
set C1 = +3.

Press Set Constant, select Single mode, and set
C1=*2.

Press 1, then CONST (constant). The calcula-
tor automatically prints and calculates +3 and
tells the value for n of the term. Successively
pressing CONST produces successive terms in
the sequence.

(a)
Linear sequence

Press 2.5, then CONST (constant). The calculator
automatically prints and calculates *2 and tells the
n of the term. Successively pressing CONST pro-
duces successive terms in the sequence.

(b)
Geometric sequence

Materials: Square color tiles

1. Start with 1 color tile. How many odd numbers
have you used? What is the area of the square?

2. Add 3 more tiles of another color along the
right and bottom edges to produce a square.
How many odd numbers have you added so
far? What is the area of the square?

3. Add 5 more tiles of another color along the
right and bottom edges to produce a square.
How many odd numbers have you added so
far? What is the area of the square?

4. Continue adding 7, then 9 more tiles.

5. Describe your findings.

Partial response:

First number: 1 = 1
First two numbers: 1 + 3 = 4
First three numbers: 1 + 3 + 5 = 9
First four numbers: 1 + 3 + 5 + 7 = 16

The sums of consecutive odd numbers are per-
fect squares. You are adding enough to match
each existing edge plus one more to fill in the
corner of the new square.

Fig. 4  The sum of consecutive odds equals a perfect square.
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quence is produced when using the explicit
form of a rule. This time, they may use the Y=
menu to enter a formula, as shown in figure 6.
Using TBLSET, students can set the table to in-
crement x values by ones. Finally, they can pro-
duce the table and compare the values pro-
duced expl ic i t ly  wi th  those produced
recursively.

Summary

FAMILIARITY WITH NUMERICAL PATTERNS IS
fundamental to students’ number sense, prob-
lem solving, mental mathematics, modeling,
and algebra concept learning. Being able to rec-
ognize, distinguish, and symbolize these pat-
terns in both explicit and recursive forms is part
of basic mathematics literacy. The function
game and its input/output tables can be effec-
tive tools in helping students to achieve these
goals. 
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Fig. 6  Using the TI-73 table feature to produce
sequences explicitly

With Y= 3X + 1 in the Y= Menu 


